Special cases of the quadratic shortest path problem

نویسندگان

  • Hao Hu
  • Renata Sotirov
چکیده

The quadratic shortest path problem (QSPP) is the problem of finding a path with prespecified start vertex s and end vertex t in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP known as the adjacent QSPP. It was recently proven that the adjacent QSPP on cyclic digraphs cannot be approximated unless P=NP. Here, we give a simple proof for the same result. We also show that if the quadratic cost matrix is a symmetric weak sum matrix and all s-t paths have the same length, then an optimal solution for the QSPP can be obtained by solving the corresponding instance of the shortest path problem. Similarly, it is shown that the QSPP with a symmetric product cost matrix is solvable in polynomial time. Further, we provide sufficient and necessary conditions for a QSPP instance on a complete symmetric digraph with four vertices to be linearizable. We also characterize linearizable QSPP instances on complete symmetric digraphs with more than four vertices. Finally, we derive an algorithm that examines whether a QSPP instance on the directed grid graph Gpq (p, q ≥ 2) is linearizable. The complexity of this algorithm is O(pq + pq).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quadratic Shortest Path Problem

Finding the shortest path in a directed graph is one of the most important combinatorial optimization problems, having applications in a wide range of fields. In its basic version, however, the problem fails to represent situations in which the value of the objective function is determined not only by the choice of each single arc, but also by the combined presence of pairs of arcs in the solut...

متن کامل

The Lagrangian Relaxation Method for the Shortest Path Problem Considering Transportation Plans and Budgetary Constraint

In this paper, a constrained shortest path problem (CSP) in a network is investigated, in which some special plans for each link with corresponding pre-determined costs as well as reduction values in the link travel time are considered. The purpose is to find a path and selecting the best plans on its links, to improve the travel time as most as possible, while the costs of conducting plans do ...

متن کامل

Two optimal algorithms for finding bi-directional shortest path design problem in a block layout

In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...

متن کامل

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

The Quadratic Shortest Path Problem and its Genetic Algorithm

The quadratic shortest path (QSP) problem is to find a path from a node to another node in a given network such that the total cost includes two kinds of costs, say direct cost and interactive cost, is minimum. The direct cost is the cost associated with each arc and the interactive cost occurs when two arcs appear simultaneously in the shortest path. In this paper, the concept of the quadratic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Optim.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2018